Section 2.5 Implicit Differentiation

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in explicit form. For example, in the equation

$$
y=3 x^{2}-5 \quad \text { Explicit form }
$$

the variable y is explicitly written as a function of x. Some functions, however, are only implied by an equation. For instance, the function $y=1 / x$ is defined implicitly by the equation $x y=1$. Suppose you were asked to find $d y / d x$ for this equation. You could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form	Derivative $x y=1$	$y=\frac{1}{x}=x^{-1}$	$\frac{d y}{d x}=-x^{-2}=-\frac{1}{x^{2}}$

This strategy works whenever you can solve for the function explicitly. You cannot, however, use this procedure when you are unable to solve for y as a function of x. For instance, how would you find $d y / d x$ for the equation

$$
x^{2}-2 y^{3}+4 y=2
$$

where it is very difficult to express y as a function of x explicitly? To do this, you can use implicit differentiation.

To understand how to find $d y / d x$ implicitly, you must realize that the differentiation is taking place with respect to x. This means that when you differentiate terms involving x alone, you can differentiate as usual. However, when you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x.

Ex. 1 Differentiating with Respect to x.

a. $\frac{d}{d x}\left[x^{3}\right]=3 x^{2}$

Variables agree: use Simple Power Rule.

Variables agree
b. $\frac{d}{d x} \overbrace{\left.y^{3}\right]}^{u^{n}}=\overbrace{3 y^{2}}^{n u^{n-1}} \overbrace{\text { Variables disagree }}^{u^{\prime}}$

Variables disagree: use Chain Rule.
c. $\frac{d}{d x}[x+3 y]=1+3 \frac{d y}{d x} \quad$ Chain Rule: $\frac{d}{d x}[3 y]=3 y^{\prime}$
d. $\frac{d}{d x}\left[x y^{2}\right]=x \frac{d}{d x}\left[y^{2}\right]+y^{2} \frac{d}{d x}[x] \quad$ Product Rule

$$
=x\left(2 y \frac{d y}{d x}\right)+y^{2}(1) \quad \text { Chain Rule }
$$

$=2 x y \frac{d y}{d x}+y^{2} \quad$ Simplify.

Guidelines for Implicit Differentiation

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $d y / d x$ on the left side of the equation and move all other terms to the right side of the equation.
3. Factor $d y / d x$ out of the left side of the equation.
4. Solve for $d y / d x$.

Ex. 2 Find $\frac{d y}{d x}$, given that $2 x^{3}+3 y^{3}=64$.

Ex. 3 Find $\frac{d y}{d x}$, given that $x^{2} y+y^{2} x=-2$.

Ex. 4 Find $\frac{d y}{d x}$ and evaluate the derivative at $(2,2)$, given that $y^{3}-x^{2}=4$.

Ex. 5 Find the equation of the tangent line to the graph of $x^{3}+y^{3}-6 x y=0$ at $\left(\frac{4}{3}, \frac{8}{3}\right)$.

Ex. 6 Find $\frac{d^{2} y}{d x^{2}}$, given that $x^{2}-y^{2}=36$.

